Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Ping Gao, ${ }^{\text {a, }}{ }^{\text {b }} *$ Ping-Dong Wu, ${ }^{\text {a }}$ Xiu-Rong $\mathrm{Hu}^{\mathbf{c}}$ and Jian-Ming $\mathbf{G u}^{\mathbf{c}}$

${ }^{\text {a }}$ Institute of Pharmaceutical Engineering, College of Materials and Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027,
People's Republic of China, ${ }^{\text {b }}$ Department of Applied Chemistry, Zhejiang Science and Technical University, Hangzhou, Zhejiang 310017, People's Republic of China, and
${ }^{\text {c }}$ Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028,
People's Republic of China

Correspondence e-mail:
gaoliping2002@hotmail.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.060$
Data-to-parameter ratio $=8.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(8S)-3-(2-Deoxy-3,5-di-O-p-toluoyl- α-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydro-imidazo[4,5-d][1,3]diazepin-8-ol

In the asymmetric unit of the title compound, $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}$, there are two independent molecules which have different conformations. The tetrahydrofuran and dihydrodiazepine rings adopt envelope conformations. The hydroxy, amino and carbonyl groups are all involved in hydrogen bonding.

Comment

The title compound, (I), is an intermediate in the synthesis of pentostatin, which is an antimetabolite/antineoplastic agent, one of the newest chemotherapy drugs (Kasibhatla \& Erion, 2000; Kasibhatla et al. 2001).

(I)

Compound (I) crystallizes with two independent molecules, A and B, in the asymmetric unit. These two molecules have different conformations (Fig. 1 and Table 1), and have different hydrogen-bonding characteristics (see below). In molecule A, the carbonyl group $\mathrm{C} 12=\mathrm{O} 14$ deviates from the least-squares plane of the C13-C18 aromatic ring, as shown by the $\mathrm{O} 14-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ torsion angle of 23.2 (5) \AA. Iy contrast, in molecule B, the $\mathrm{O} 34-\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 44$ torsion angle is $2.5(5)^{\circ}$, indicating coplanarity. In addition, there are significant differences in the relative orientations of the C_{6} aromatic rings of the tolyl groups in molecules A and B, as seen by the dihedral angles between them of 30.33 (13) and $22.85(13)^{\circ}$, respectively. Furthermore, in molecule A, the imidazole ring plane is almost parallel to the C21-C26 aromatic ring, forming a dihedral angle of $5.75(14)^{\circ}$, but forming a dihedral angle of $29.76(13)^{\circ}$ with the second

Received 15 July 2006 Accepted 28 July 2006

Figure 1
The molecular structures of the two indpendent molecules comprising the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A packing diagram for (I). Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) $1-x,-\frac{1}{2}+y, 1-z$; (ii) $1-x, \frac{1}{2}+y, 1-z$.]
aromatic ring containing $\mathrm{C} 13-\mathrm{C} 18$. In contrast, in molecule B, the imidazole ring is almost parallel to the C43-C48 aromatic ring [dihedral angle $7.57(12)^{\circ}$] but forms a dihedral angle of 26.42 (13) ${ }^{\circ}$ with the C51-C56 ring, i.e. opposite to what is observed for molecule A. In both independent molecules, the tetrahydrofuran and dihydrodiazepine rings adopt envelope conformations.

The hydroxy, amino and carbonyl groups are all involved in the hydrogen-bonding scheme, as detailed in Table 2. N$\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into a linear hydrogen-bonded ribbon motif along the b-axis direction and this chain is further stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions (Fig. 2).

Experimental

To 3-(2-deoxy-3,5-di- O - p-toluoyl- α-D-erythro- pentafuranosyl)-6,7dihydroimidazo $[4,5-d][1,3]$ diazepin- $8(3 H)$-one $\quad(5.0 \mathrm{~g}, \quad 0.01 \mathrm{~mol})$ dissolved in $\mathrm{MeOH}(150 \mathrm{ml})$ was added sodium borohydride $(0.15 \mathrm{~g}$, 0.004 mol). The solution was stirred at 298 K for 0.5 h , at the end of which time the excess reducing agent was decomposed by the addition of dry ice. High-performance liquid chromatography revealed a ca 1:1 mixture of (8S)-3-(2-deoxy-3,5-di-O-p-toluoyl- α-D-erythro-pentafuranosyl)-3,6,7,8-tetrahydroimidazo $[4,5-d][1,3]$ diazepin-8-ol and ($8 R$)-3-(2-deoxy-3,5-di-O-p-toluoyl- α-D-erythro-pentafuranosyl-$3,6,7,8$-tetrahydroimidazo $[4,5-d][1,3]$ diazepin- 8 -ol. The above diastereoisomeric mixture was decolorized using active carbon and filtered. Evaporation of the filtrate left 4.2 g of a light-brown solid residue. This solid was dissolved in hot ethyl acetate $(150 \mathrm{ml})$ and the solution was left to stand at 273 K for 3 d . The crystalline $8 S$-isomer was filtered off and washed with cold ethyl acetate. Recrystallization three times gave 99% analytically pure $8 S$-isomer (Baker \& Putt, 1979; Showalter \& Putt, 1981; Chan et al., 1982). Compound (I) was recrystallized from an acetone solution yielding yellow crystals suitable for the X-ray diffraction study.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}$
$M_{r}=504.54$
Monoclinic, $P 2_{1}$
$a=10.492$ (2) A
$b=12.849$ (3) \AA
$c=18.645$ (5) \AA
$\beta=97.949$ (10) ${ }^{\circ}$
$V=2489.5(10) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: none
24329 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.060$
$S=1.00$
5949 reflections
668 parameters
H -atom parameters constrained
$Z=4$
$D_{x}=1.346 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296$ (1) K
Block, yellow
$0.30 \times 0.14 \times 0.12 \mathrm{~mm}$

> 5949 independent reflections 2974 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
> $R_{\text {int }}=0.044$
> $\theta_{\max }=27.5^{\circ}$

[^1]Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O13-C11	$1.437(3)$	N13-C9	$1.344(4)$
O13-C12	$1.354(3)$	N14-C9	$1.274(3)$
O14-C12	$1.193(4)$	N14-C10	$1.382(3)$
O15-C20	$1.341(3)$	N32-C36	$1.378(3)$
O33-C41	$1.455(3)$	N33-C39	$1.339(4)$
O33-C42	$1.335(3)$	N34-C39	$1.292(3)$
O34-C42	$1.208(4)$	N34-C40	$1.368(3)$
O35-C50	$1.356(3)$	C6-C7	$1.486(3)$
N12-C6	$1.392(3)$	C36-C37	$1.505(4)$
C5-N11-C4-O11	$-68.0(3)$	O13-C12-C13-C18	$24.0(4)$
C10-N11-C4-O11	$116.9(3)$	O14-C12-C13-C14	$23.2(5)$
C35-N31-C34-O31	$-85.1(3)$	O33-C42-C43-C48	$3.0(4)$
C40-N31-C34-O31	$91.9(3)$	O34-C42-C43-C44	$2.5(5)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O12-H121 $\cdots \mathrm{O} 34^{\mathrm{i}}$	0.91	1.98	$2.889(3)$	173
O32-H321 \cdots O16	0.91	2.23	$3.013(3)$	144
N13-H130 N^{i}	0.86	2.22	$2.975(3)$	146
N33-H330 $\cdots \mathrm{N} 32^{\mathrm{ii}}$	0.86	2.33	$2.954(3)$	130

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+1$; (ii) $-x+2, y+\frac{1}{2},-z+2$.
O-bound H atoms were located from difference Fourier maps and included in the refinement based on the as-found $\mathrm{O}-\mathrm{H}$ bond lengths $(\mathrm{O}-\mathrm{H}=0.91 \AA)$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom). The $\mathrm{N}-$ and C -bound H atoms were included in the riding-model approximation, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom). In the absence of significant anomalous scat-
tering effects, 4005 Friedel pairs were averaged in the final refinement.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

We acknowledge Drs Xiurong Hu and Jianming Gu for assistance with the experiment and prepration of the manuscript. We thank the Chempacific Corporation for financial support.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Baker, D. C. \& Putt, S. R. (1979). J. Am. Chem. Soc. 101, 6127-6128.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Chan, E., Putt, S. R. \& Showalter, H. D. H. (1982). J. Org. Chem. 47, 34573464.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kasibhatla, S. R., Bookser, B. C., Xiao, W. \& Erion, M. D. (2001). J. Med. Chem. 44, 613-618.
Kasibhatla, S. R. \& Erion, M. D. (2000). J. Med. Chem. 43, 1519-1524.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
Showalter, H. D. H. \& Putt, S. R. (1981). Tetrahedron Lett. Vol.22, 3155-3158.

[^0]: © 2006 International Union of Crystallography All rights reserved

[^1]: $w=1 /\left[0.8800 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)\right] /\left(4 F_{\mathrm{o}}{ }^{2}\right)$
 $(\Delta / \sigma)_{\text {max }}=0.001$
 $\Delta \rho_{\text {max }}=0.32 \mathrm{e}^{-3} \mathrm{~A}^{-3}$
 $\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$
 Extinction correction: Larson
 (1970), equation 22

 Extinction coefficient: 198 (9)

